Ischemic transient neurological events identified by immune response to cerebral ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Deciphering whether a transient neurological event (TNE) is of ischemic or nonischemic etiology can be challenging. Ischemia of cerebral tissue elicits an immune response in stroke and transient ischemic attack (TIA). This response, as detected by RNA expressed in immune cells, could potentially distinguish ischemic from nonischemic TNE. METHODS Analysis of 208 TIAs, ischemic strokes, controls, and TNE was performed. RNA from blood was processed on microarrays. TIAs (n=26) and ischemic strokes (n=94) were compared with controls (n=44) to identify differentially expressed genes (false discovery rate <0.05, fold change ≥1.2). Genes common to TIA and stroke were used predict ischemia in TIA diffusion-weighted imaging-positive/minor stroke (n=17), nonischemic TNE (n=13), and TNE of unclear etiology (n=14). RESULTS Seventy-four genes expressed in TIA were common to those in ischemic stroke. Functional pathways common to TIA and stroke related to activation of innate and adaptive immune systems, involving granulocytes and B cells. A prediction model using 26 of the 74 ischemia genes distinguished TIA and stroke subjects from control subjects with 89% sensitivity and specificity. In the validation cohort, 17 of 17 TIA diffusion-weighted imaging-positive/minor strokes were predicted to be ischemic, and 10 of 13 nonischemic TNE were predicted to be nonischemic. In TNE of unclear etiology, 71% were predicted to be ischemic. These subjects had higher ABCD(2) scores. CONCLUSIONS A common molecular response to ischemia in TIA and stroke was identified, relating to activation of innate and adaptive immune systems. TNE of ischemic etiology was identified based on gene profiles that may be of clinical use once validated.
منابع مشابه
Research Paper: Optimization of Transient Focal Cerebral Ischemia Model by Middle Cerebral Artery Occlusion
Introduction: Cerebral ischemia is one of the most common causes of death in human populations in the industrial communities. The need for animal models is inevitable to study the pathophysiology and treatment of cerebral ischemia in human. The current study aimed at evaluating the strengths and weaknesses of different techniques used to create ischemia in previous studies and optimizing the tr...
متن کاملPre-Ischemic Treatment of Pentoxifylline Reduces Infarct Volumes in Transient Focal Cerebral Ischemia in the Rat
Background: Pentoxifylline (PTX) is used in human for intermittent claudication and cerebral vascular disorders including cerebrovascular dementia. It also inhibits the synthesis of tumor necrosis factor-α (TNF-α), which is believed to be neurotoxic in animal models of cerebral ischemia. The objective of this study was to examine the role of PTX on ischemia/reperfusion injures in rat model of t...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملQuantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat
Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...
متن کاملEvaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat
Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2012